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Natural convection above fires 

By M. P. M U R G A I ~ A N D  H. W. EMMONS 
Pierce Hall, Harvard University 

(Received 26 January 1960) 

The turbulent natural convection above fires in a dry calm atmosphere with a 
constant lapse rate has been the subject of several recent investigations (see 
references). The present paper presents solution curves from which the natural 
convection may be computed over a fire of arbitrary size in an atmosphere with 
arbitrary lapse-rate variation. The independent parameters of fire size, energy 
release rate (buoyancy), momentum release rate and atmospheric lapse rate are 
given over the expected range of values. The arbitrary variation of lapse rate is 
thus calculable as piecewise constant. 

1. Introduction 
The hot gasses produced by a fire, being lighter than the ambient air, experi- 

ence an upward buoyant force. Thus a column of rising hot gas is formed. If the 
Reynolds number of this column is low enough, the flow will remain laminar and 
additional air will be mixed in and carried upward through molecular processes 
only. If the Reynolds number is high the gas column becomes turbulent and the 
mixing of additional air is greatly increased. Although the precise conditions 
required for a completely laminar convection column are not known (at least 
to the authors), recent experiments indicate that for open-pan fires the hot gas 
column is largely turbulent for all pan sizes larger than a, few inches. The turbu- 
lent flow may take a distance of a pan diameter or two to become established 
but all further convection column flow is fully turbulent. For this reason the 
present work is confined to a treatment of the turbulent convection column. 

As the column rises it cools due to both expansion and the mixing of atmo- 
spheric air. Thus in an atmosphere with a stable lapse rate, the column slows its 
rise, finally stops, and then falls back to an equilibrium level. For an atmosphere 
with an unstable lapse rate, any disturbance will grow to produce a large eddy. 
The rising column acts as such a disturbance, is augmented as it rises, and thus 
localizes one of the points of overturning. For an arbitrary lapse-rate variation, 
the solution to the convection problem would have to be carried out for each 
case from the beginning, since no sufficiently simple solution has yet been found. 
However, if the atmosphere is considered as of piecewise constant lapse rate, and 
the solution is given for arbitrary fire size bo, velocity uo and buoyancy Ayo, then 
it is possible to compute the entire column by using the final b, u, Ay values from 
one section as the starting values of the next. 

There are several methods of treatment of the turbulent flow in the rising 
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column. Schmidt (1941), the first to examine this problem, neglected vertical 
diffusion and used both the Prandtl momentum transfer and Taylor vorticity 
theories. The mixing length was assumed equal to the plume width. Later Rouse, 
Yih & Humpheries (1952) independently made a similar investigation and showed 
close agreement with experimental results. Priestly & Ball (1955) gave a solution 
for the movement of smoke from chimneys. They assume that the plume spreads 
linearly with height from the virtual source. Indirectly this is equivalent to  a 
mechanism of turbulence. 

A simpler transfer mechanism was assumed by Morton, Taylor & Turner (1956). 
Their solutions also agree well with experiment, thus justifying their simpler 
assumption. Morton (1957) later included the effect of moisture on the rising 
column. He also more recently (1959) extended his previous work to  the mathe- 
matical discussion of finite size, positive and negative buoyancy sources in a 
stable atmosphere. 

The effect of moisture is worthy of note since its condensation is sometimes 
observed over fires and such condensation alters, considerably, the convection 
column rise. 

In  the present work, the convection problem is reduced to the smallest possible 
number of parameters that still permits calculation of a very general case. No 
assumption of virtual source is made. No additional assumptions are made, but a 
new set of dimensionless variables is required by the desire to compute a general 
atmosphere in a piecewise constant manner. 

2. Fundamental equations 
Consider a cylindrically symmetrical convection column. Take the Z-axis 

vertically upward, and r radial. The corresponding velocity components u, v, 
the density p, the pressure p and all other fluid properties are assumed to be local 
mean values. Thus turbulent components are averaged out or included in other 
terms as shear stress T or heat flux q. Finally, we assume that the vertical pressure 
distribution is given by the usual hydrostatic approximation, 

P = P,o-YrrJ% (1) 

ym being the specific weight of the fluid outside the plume a t  infinity, and po the 
standard pressure. The equations of conservation of mass, momentum and 
energy are then 

ayru ayrv -+- = o ,  az ar 

au au r(ym-y) i a r ~  
ru-+rv- = ___ +--, 

a2 ar P P ar 
ah ah 1 arq 

r u--+v--+ug =--- ( az ar 1 P a r '  

(3) 

(4) 

in which y is the specific weight of the fluid in the plume, h is the enthalpy per 
unit volume, g is the acceleration due to gravity, and T and q are the vertical shear 
stress and radial component of heat flux, being given, for linear turbulence, by 
rr  = -pv'u' and rq = pcpvlT', respectively. U I ,  v' and T' are the fluctuating 
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components of u, v and T, and cp the average specific heat of air at constant pres- 
sure. While deriving the equation (4), the dissipation function and vertical heat 
flux have been neglected. 

10 

8 

6 

2 

2 

FIGURE 1. The variation of plume width b 
with height z and atmospheric lapse I-. 
Parameter uo is initial plume velocity. 
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FIGURE 2. The variation of plume velocity u 
with height z and atmospheric lapse rate I’. 
Parameter uo is initial plume velocity. 

The major effects of the decrease of atmospheric pressure with height are taken 
into account in a simple way by introducing the potential temperature To and 
specific weight yo defined by 

(k-l)!k I l k  
To= @) T, yo= ($) Y, ( 5 )  

T being the absolute temperature and k the ratio of specific heats. After some 
manipulation the conservation equations become 

where density variations are neglected in the continuity equation and a term 
involving variations of potential density is omitted from the energy equation 
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(see Appendix for details). The quantities with subscript 0 refer to the potential 
variables. 

By integration of each of (6), (7), (8) from r = 0 to r =  00, mean values of 
various quantities are defined. This is not a unique set of definitions but has some 
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FIGURE 3. Thevariationofplume buoyancy h 
with height z and atmospheric lapse rate r. 
Parameter u,, is initial plume velocity. 

FIGURE 4. The variation of plume width b 
with height z and atmospheric lapse rate r. 
Parameter u,, is initial plume velocity. 

simple properties as noted below. The mean values may be looked upon as de- 
fining the equivalent top-hat profiles. Thus we obtain the mean velocity 

~. j - m r u 2 a ,  

‘U == -0.- 

Cmrudr ’ 
(9) 

the mean width b, given by 
Jo  

2 [ * m a r  

the mean specific gravity difference 
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FIGURE 5. The variation of plume velocityu 
with height x and atmospheric lapse rate J?. 
Parameter uo is initial plume velocity. 

FIGURE 6. Thevariation of plume buoyancy h 
with height x and atmospheric lapse rate l?. 
Parameter u,, is initial plume velocity. 

The factor I depends upon the profile shapes as can be seen from the second 
form. In  particular, if the velocity and specific gravity difference are of the same 
shape 

u = Af(r),  __ - Bf(r), and hence I = 1. 

Furthermore, if 

as is sometimes assumed, then 

(13) 
AYo - 
Yo 

f(r) = e-re/B2, 
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In  the following neither (13) nor (14) will be assumed, but we will assume that 
I is independent of the height E .  If this is not so, then either a two- (or three-) 
dimensional theory is essential, or some assumption concerning the variation of 
I with Z must be introduced. 
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Figure 7. The variation of plume width 6 
with height x and atmospheric lapse rater. 
Parameter uo is initial plume velocity. 

X 

FIGURE 8. The variationofplumevelocityu 
with height x and atmospheric lapse rate I?. 
Parameter u, is initial plume velocity. 

In  terms of the above mean values, the three equations (6), (7),  (8) become 

d ;i2ATo62 %2dlnT,, -___ - 
d5 Yo I ’ 

where aU6 = lim ( - 2rv) is the mass entrainment rate 
r+ w 

(15) 

(16) 

(17) 

and a is supposed to be a 

constant. At the level of the ground (using the atmospheric pressure at  the ground 
as po) ,  the heat flux Q is given by 

where the last expression assumes a top-hat distribution. 
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It has been customary to define dimensionless variables by use of Q. This has 
advantages when dealing with a point source of energy, but for the present gen- 
eral problem of arbitrary initial size, velocity and energy, the following is some- 
what better since it simplifies the treatment of variable atmospheres. Let 

X 

FIGURE 9. Thevariation ofplume buoyancy A 
with height z and atmospheric lapse 
rate I?. Parameter uo is initial plume 
velocity. 

FIGURE 10. The variation of plume width b 
with height x and atmospheric lapse 
rate r. Parameter u,, is initial plume 
velocity. 

(I' is the dimensionless lapse rate). The subscript 0 outside the brackets stand 
for the initial value of the potential variable. All quantities marked with an 
overbar have physical dimensions. (The defined quantities should not be con- 
fused with those of equations (1- l l ) . )  Note that u is the Froude number based 
upon buoyancy (except for a). 
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The final form of the conservation equations now is 
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FIUURE 11. The variation of plume velocity ZG 

with height x and atmospheric lapse rate I?. 
Parameter uo is initial plume velocity. 

FIGURE 12. The variation of plume buoy- 
ancy h with height x and atmospheric lapse 
rate r. Parameter uo is initial plume 
velocity. 

If we are interested in an arbitrary atmosphere, the lapse rate is a function of 
height (r = r(z)). In view of the approximations already made it appears 
sufficiently accurate to take J? as constant over ranges of x. Thus for any range 
(n) the boundary conditions at its lower edge (x, = 0) are simply related to the 
solution at  the top (x,-~ = of the next lower range (n- 1). Thus for any 
range of height, the boundary conditions are 

X ,  = 0, b, = 1, A, = 1, 
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The solutions to equations (20), (21), (22), with boundary conditions (23) were 
drawn by a Pace computer for the following values of the two parameters 

uo = 0.2, 0.5, i , 2 , 5 ,  - 10 < r < 10. 

These values were chosen to cover the range of fire convection columns. The value 
uo = 0 was omitted in spite of the fact that a hot plate appears to initiate such- 
a rising column. The equations yield an unreal singular solution (see (24) 
below). This is as it should be, since our equations neglect vertical conduction. 
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FIGURE 13. The variation of plume width b 
with height .z and atmospheric lapse 
rate I'. Parameter uo is initial plume 
velocity. 
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Figure 14. Thevariationofplumevelocityu 
with height x at  atmospheric lapse rate I'. 
Parameter u,, is initial plume velocity. 

Figures 1 to 15 present velocity u, density defect h and column width b as 
functions of x and the parameter I? for each of the five chosen values of initial 
velocity uo. 

As mentioned before, the solution may be developed from these curves by inter- 
polation in I' at constant uo until such atmospheric height that the d (In TmO)/dx 
changes to a new constant value. At this height the computation must be 
started again using new values of u,o and l? (and, of course, a new elevation datum 
x = 0). 

At the start of the computation, or when changing from one constant region 
to another, the value of uo may not fall on one of the values for which curves 
are presented in figures 1 to 15. One can sometimes with sufficient accuracy 
interpolate between available uo as well as I? values. Such double interpolation 
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can be avoided by calculating a short range of altitude by the following approxi- 
mate formulas: 

u = u o +  --uo x-- 1 + - -  2r+3,>+ ..., 1 
(:o ) ;::( 2 

(24) 

A 

1 6 

1 -4 

1.2 

1 .o 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

0 4 8 12 16 

X 

I 

FIGURE 15. The variation of plume buoyancy A with height z and atmospheric lapse 
rate I'. Parameter uo is initial plume velocity. 

This calculation should be continued to such a value of x that if a new range is 
again started, u, has one of the 5 available values. This value of x, given to the 

where uo, r are values appropriate to the short range being computed and u$ is 
the nearest uo for one of the available solution graphs. 

To illustrate the method of use of the solutions herein presented, the following 
problem is solved. Suppose a fire of 10m diameter releases heat at the rate 
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10s cal/sec. Suppose, in agreement with some rough measurements, the upward 
velocity just above the flames is U. = 3 m/sec. 

Atmospheric conditions chosen are those which existed over Seattle, Washing- 
ton on 1 August 1957. The temperature, potential temperature and piecewise 
constant lapse rate are shown in figure 16. 
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FIUURE 16. Variation of temperature, potential temperature and potential temperature 
lapse-rate with height above sea level on 1 August 1957, Seattle, Washington. 

By (18) and the given data, one finds that at the ground level (h = 125 m above 
sea level) the buoyancy value is 

'a0 = 0.614, 
Yo0 

and, by (19), using cc = 0.1, that u,, = 0.13, = - 0.021. This completes the first 
line of table 1. The value uo = 0.13 does not correspond to any of the available 
solution curves. The nearest is uo = 0-2. Equation (25a) indicates that, at  
z= 0.007 diameters, a new start would result in uo = 0.2. Now equations (24) 
give line 2 of table 1 while line 3 gives the starting values for use with the solution 
curves. 

The height of the top of the first lapse-rate range is 52 m. Thus 5 varies from 
0 to 51.3 m, or in dimensionless form, from 0 to 64. The solution curves now give 
values for u, b, h at 2 = 0.64, uo = 0.2, = - 0.017. Thus line 4 of table 1 can be 
completed. 

The next lapse-rate range begins at h = 52m and ends a t  75m. This rangeis 
computed as above except that interpolation between uo = 1 and uo = 2 is more 
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convenient than use of (25). Additional lapse-rate ranges are computed in the 
same manner up to range 5 where the velocity falls to zero. Thus we find that at 
h = 2180m the column stops rising. The buoyancy falls essentially to zero at a 
height of 704m and goes negative at  a height of about 1400. 

The resultant changes in the column velocity, diameter and buoyancy are 
plotted in figure 17. 
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Appendix 
If terms are not neglected, equations (6)) (7)) (8)) are replaced by 

Introducing the ideal gas relation between To and Ayo/y0, 

. _  
equation 3a becomes 

= -ru--lnTm0 AYO d 
Yo dx 

Following the steps of derivation and definition of mean and dimensionless 
quantities as in the paper, assuming po const,ant in l a ,  and further noting that 

k - 1  R p0 -= -= -  
k CP CPTOPO' 

R being the gas constant per unit mass, we find that equations (20))  (21)) ( 2 2 )  
become d 

- b2u = bu- b'uX*, 
ax 

x* is a measure of the variation of the potential density with height and in 
view of the equation ( 1 )  is given as an explicit function of (po/p)(k-l)/k. x* does not 
become important unless we are dealing with large fires and large heights (large 
pressure ratios). For example, for a fire size of 1Ok and for (po/p)  w 4, x* = 0.3. 
This pressure ratio corresponds almost to the top of the troposphere. For most 
fires and an atmosphere of several stable and unstable lapse rates, this height will 
never be reached and z* will therefore be even less important. IS* can be neglec- 
ted compared with r, as is apparent from their definition, for temperatures 
To < 2Tmo. 
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